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Abstract

Observations of internal gravity wave beams are frequently accompanied by
theory that is purely two-dimensional, or two-dimensional numerical models.
Although qualitative agreement between such models and laboratory experi-
ments has been demonstrated, quantitative comparison has only been possible
in a limited range of cases. Here, we present a quantitative comparison for in-
ternal wave attractors in the laboratory and a two-dimensional non-hydrostatic
numerical model. To make a closer connection with previous theoretical work,
the experimental and numerical results are presented in terms of the streamfunc-
tion and density perturbation, rather than the measured velocity and density
gradient fields. The streamfunction is commonly used in the two-dimensional
descriptions, e.g. to predict spatial patterns found in an enclosed stratified
fluid in the laboratory. We demonstrate that, although the laboratory experi-
ment in a narrow tank is only semi-two-dimensional, the flow is well described
by two-dimensional internal wave theory and the numerical model reproduces
quantitatively comparable attractors. The observed streamfunction field is com-
pared with theoretical predictions, addressing an open question on the form of
the streamfunction for internal wave attractor in a trapezoidal domain. The
streamfunction has a simple spatial structure with sharp gradients at the at-
tractor separating regions of nearly constant value outside the attractor.
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1. Introduction

Internal wave attractors can arise in stably stratified fluids in a confined domain
[13] and are observed in the laboratory [12]. In a trapezoidal tank of uniform
width with one sloping end-wall, internal waves reflect from the sloping wall
into the domain and are focused towards an attractor. Repeated reflection from
the sloping wall leads to an energy cascade to the higher wave numbers [7].
With a steady forcing at large scales, a balance is reached between the energy
cascade and dissipation at the viscous scale, observed as a steady state inter-
nal wave attractor. The steady state internal wave amplitude can be increased
by using different forcing mechanisms [8]. Quite generally, stable continuously
stratified fluids support internal wave beams resulting from a disturbance in the
fluid [3, 20, 18, 17, 4]. The properties of internal gravity waves in laboratory
experiments have often been observed and measured using schlieren [15] and
more recently synthetic schlieren [2, 18] techniques. Synthetic schlieren obser-
vations provide an integrated view and usually assume homogeneity of the fluid
response in the direction of view, as if it were two-dimensional. These observa-
tions are sensitive to the gradient of the density perturbation, but it is possible
to invert this to recover the perturbation density (see [2] and in a simpler form
in [18]). However, it has become customary to present just the directly observed
gradient information rather than the more natural density perturbation itself.
By its very design, PIV (particle image velocimetry) leads to planar velocity
measurements in the fluid. Again assuming homogeneity in one direction, the
measured velocity fields can be combined in streamfunction ψ. The streamfunc-
tion relates the velocity fields, (u,w) = (−ψz, ψx) (where we anticipate that in
the following u will be the velocity component in the horizontal x direction and
w the velocity in the vertical z direction). This streamfunction is also the field
considered in the theory for internal wave attractors [13, 10].

The laboratory experiments of Hazewinkel et al.[7] were very successfully
modelled in a numerical study [5] using the MIT general circulation model [14]
in a two-dimensional set-up. Naturally, the calculations were done in terms
of the density field, but, in order to compare with the observation from the
laboratory, the gradient density fields were presented. The very strong cor-
respondence between the results of laboratory and numerics allows for further
comparison. It suggests that indeed the laboratory experiments can be assumed
two-dimensional. If this is confirmed, the use of the streamfunction makes sense
and wider connection can be made between theory and observations. The use
of numerical simulation and laboratory experiment can then answer the open
question as to what is the streamfunction of internal wave attractors is in a real
viscous fluid.

Theoretically, the two-dimensional inviscid streamfunction for free internal
waves in an enclosed domain with suitably re-scaled coordinates, can be found
exactly by solving the spatial wave equation

∂2ψ

∂x2
− ∂2ψ

∂z2
= 0, (1)
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with ψ = 0 at the arbitrarily shaped boundaries, by means of ray tracing [13].
The equation can be solved by noting that an arbitrary complex function f is
preserved along the characteristics x− z and x+ z. From any starting point at
the surface the characteristics reflect through the domain, creating a web of con-
nected points. Once the web is constructed, the prescription of f at the surface
determines the spatial structure of ψ(x, z). However, as f is preserved along
the rays, there are connections between surface points. This means that the
surface prescription of f should be limited to so-called fundamental intervals.
This localised prescription then determines the structure of ψ(x, z) in the whole
domain. An example of such a streamfunction for a rectangular tank with a slop-
ing side wall (trapezoid) was presented by [12], see figure 1a. This geometrically
constructed, unforced internal wave pattern is self-similar in space and has fine
structures around the attractor, set only by the form of f across the fundamental
intervals at the surface. The corresponding analytic solution for streamfunction
recovers these fine structures and features a self-similar spectrum [11]. A modi-
fied picture for the streamfunction was found [9] for a continuous forcing in the
form of seiche wave at the surface. In order to preserve this continuous pres-
sure along the surface it was assumed that the imposed values did not influence
surface pressure values elsewhere, even though the points were connected by
the characteristics. The modified picture for the streamfunction, although still
inviscid, lost most of the fine structure. It became more a plateau type, that
is, the streamfunction has constant values outside and inside the attractor with
a sharp jump in value at the attractor, see figure 1b. Similar solutions for the
streamfunction were found in numerical work, using a regularisation procedure
for the discretised problem, based on minimisation of the energy [19].

(a) (b)

Figure 1: Streamfunction for inviscid internal wave attractor as found by [12] and [9].
a) A free wave solution, b) the forced wave solution. [Courtesy Frans-Peter Lam]

The objectives of this paper are twofold. Building further on the success-
ful two-dimensional numerical simulation of the laboratory experiments [5], we
now compare results from laboratory and simulation that both feature a tank
scale sloshing as internal wave forcing. First we use the numerically obtained
density field to verify the integration of the density gradient fields observed in
the laboratory, and use this field to check if two-dimensional theory applies in
the laboratory experiment. Secondly, we compare the observed streamfunction
from both laboratory experiments and from numerical experiments with the
prediction from two-dimensional theory for a sloshing type of forcing.
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2. Experimental setup

Fluid height H = 250 mm
Length L = 453 mm
Width (Lab) W = 120 mm
Angle of sloping wall α = 0.47 rad
Buoyancy frequency N = 2.2±0.1 rad s−1

Viscosity ν = 1 mm2s−1

Diffusivity κ = 1.3 × 10−3 mm2s−1

Prandtl number Pr = ν/κ = 770
Forcing period T = 5.12 ± 5 × 10−3 s
Forcing frequency ωe = 2π/T = 1.23 rad s−1

Table 1: Parameters of both experiments §2.

2.1. Description of laboratory experiments

For the laboratory experiments a trapezoidal tank containing a fluid with di-
mensions L × W × H is used, see table 1. As the tank is relatively narrow,
the motion was assumed to be nearly two-dimensional in previous work. The
tank is filled using a pair of peristaltic pumps with density stratification that is
linear in the vertical. The stratification is characterised by buoyancy frequency
N =

√

−g/ρ0 dρ̄/dz with ρ0 the reference density of the fluid, ρ̄(z) the density
stratification and g the acceleration due to gravity. We use a density probe
that can traverse vertically through the tank to establish N . To measure the
motions of the fluid in the tank, we make use of both synthetic schlieren and
PIV techniques, as described in [8, 6]. For the synthetic schlieren, we have a
dot pattern on a light-bank 0.5 m behind the tank fixed in the laboratory. The
internal waves are forced by horizontally oscillating a platform supporting the
tank with an amplitude of 2 cm at fixed frequency ω. This horizontal motion
of the platform results in a weak sloshing of the water in the tank. The sloping
side wall converts this barotropic sloshing into weak baroclinic internal waves
that focus towards the attractor to form wave beams [7]. As the tank and fluid
are horizontally oscillating in front of the dot pattern, we phase lock the camera
with the oscillation, capturing 32 frames evenly spaced through each forcing
period. This allows us to perform the synthetic schlieren during the steady
state of the experiment, with each of the 32 snapshots having its own reference
frame to remove the influence of any optical imperfections in the tank. The
particles for the PIV are Iriodin Glitter Bronze 530 from which we selected fine
particles that slowly sink out in the fluid. The images used for the PIV are
captured using the same phase-locked technique as for the synthetic schlieren.
Both synthetic schlieren and PIV techniques rely on pattern matching. In the
case of synthetic schlieren, the dot pattern gets distorted by density and hence
refractive index changes in the fluid. The apparent displacement of the dots due
to this distortion is determined by correlation with an unperturbed image. For
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the PIV, the particle patterns from frame to frame are tracked and represent
the local Eulerian velocity field (though the particles are Lagrangian of course).
The data are analyzed with the DigiFlow software (Dalziel Research Partners,
Cambridge). For simplicity and to maximise the signal quality, we used separate
experiments for the synthetic schlieren and PIV measurements. This was pos-
sible as the experiments proved to be highly repeatable, with differences of less
than 3% even after emptying and refilling the tank. Typically, we used a given
stratification twice, first for synthetic schlieren then, after adding particles, for
PIV, further reducing the difference in the conditions between SS and PIV runs.

2.2. Description of numerical simulation

The numerical configuration is nearly the same as in [5]. The MIT general cir-
culation model is used in a two-dimensional configuration to solve the nonlinear,
nonhydrostatic, incompressible Boussinesq equations that govern the fluid dy-
namics [14]. Its second-order finite volume implementation allows for a simple
treatment of the topography (as opposed to spectral methods). No sub-grid
parametrization is used and the simulation models diffusion using the ordinary
Laplacian operator. They are at a high enough resolution to ensure the motion
is well resolved. Indeed, the spatial resolution △ is 0.5 mm in both vertical
and horizontal directions, meaning that the width of the attractor (∼ 5 cm)
is resolved by about hundred points. For technical reasons regarding the way
the code handles the equations, the numerical domain and the vertical density
gradient are flipped in the z-direction relative to those of the experiments. The
Boussinesq equations are indeed invariant under this transformation and to keep
the comparison simple, the figures related to the numerical simulation will be
flipped again in the z-direction. We discretise time into 250 time steps per forc-
ing period. The fastest wave propagating in the domain being the mode-one
internal wave of horizontal phase speed H

√

N2 − ω2
e/π, the Courant number in

our configuration is therefore

C =
H
√
N2T 2 − 4π2

250π△ ≈ 6

The physical parameters are based on those used in the laboratory experiment
and are listed in table 1. The numerical physical setting is nearly the same as
in the laboratory, although some discrepancies remain. A first difference lies in
the forcing that is of a different nature than the forcing in the laboratory one.
Indeed, in the laboratory experiment the horizontal velocity of the fluid vanishes
(relative to the tank) at the vertical wall, whereas for the numerical simulation
we use an open boundary condition in the form of an oscillating current (ub, wb)
at the vertical wall, reproducing a mode-1 internal wave:

ub(t, z) =
A

√

N2 − ω2
e

N
sin(ωet) cos

πz

H

wb(t, z) = −Aωe

N
cos(ωet) sin

πz

H
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The amplitude of the mode-one wave, A = 0.4 mm/s, is chosen so that the
maximal velocity within the attractor field is in close agreement with the ex-
perimental one, which is the order of 10 mm/s. Another difference lies in the
purely two-dimensional numerics that cannot take into account the dissipation
that occurs in viscous shear layers at the front and back walls in the laboratory
experiment. The long horizontal side of the trapezium, which is located at the
bottom of the experiment but at the top of the numerical domain, is coded with
a linear free-surface condition. A free-slip boundary condition is implemented
for the short horizontal side (which is located at the bottom of our numerical
domain) and the sloping boundary of the trapezium in order to inhibit viscous
layers that would be underresolved. Indeed, the Reynolds number is higher
where the beams reflect against boundaries. With a typical fluid velocity of
1 cm/s, a typical scale of 50 mm and a viscosity ν as defined, the Reynolds num-
ber there is about 500, low enough for the boundary layer to be considered as
laminar. The typical thickness of the boundary layer for an oscillating field is
√

ν/ω ≃ 1 mm, which is too small to be resolved by our grid. As noticed in [5],
the absence of viscous effects at the walls might lead to a noticeable underes-
timation of the dissipation at the boundaries. Finally, the vertical boundary is
where the forcing is applied, which is a boundary condition by itself.

A linear equation of state is used and thermal expansion coefficient is cho-
sen such that the stratification is linear in temperature, and thus described by
constant N . Thermal diffusivity κ is set to the value for the salt diffusion in the
laboratory and no heat flux is prescribed at the boundaries.

2.3. New method of representing experimental data

In most previous work the results of the synthetic schlieren imaging are pre-
sented in terms of the gradient perturbation buoyancy fields [21, 1], (bx, bz) =
−g/ρ0∇ρ′, as these are directly found from the distortions of the dot pattern
by density perturbation ρ′. Here, we introduce the integrated field

b = ∇−1(bx, bz). (2)

Although we expect b = ∇−1(bx, bz), direct integration is complicated by noise
in the experimental measurements of the irrotational ∇b field, leading to an
additional rotational part. We thus choose to integrate b = (g/ρ0)ρ

′ through a
least squares procedure that minimises the energy contained in the rotational
part, see the Appendix for details. In summary, we note that the least squares
solution for b on a regular two-dimensional grid with an irregular boundary,
for each point in the domain or on the boundary, corresponds to taking the
mean of the solutions calculated from the (up to four) immediately neighbouring
points at which the solution exists. The structure of this problem then leads
itself to a simple iterative solution, convergence of which is greatly enhanced
by formulating in a multigrid framework. Only a single arbitrary constant of
integration is required, here selected so that the spatial mean of b vanishes. We
note in passing that setting b = 0 outside the domain and then using the regular
procedure (e.g. using library function intgrad2 [John D’Errico, Mathworks]) for
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integrating the gradient in a rectangular domain leads to a slightly larger error,
but provides a good alternative. The main problem points are found to be the
sloping wall and the reflection points at the walls and surface. However, the
difference fields, bx,z − ∇(∇−1(bx, bz)) are at most 5% in the reflection points
and much smaller elsewhere.

We can use the same multigrid least squares iteration procedure to determine
the streamfunction from

ψ = ∇−1(w,−u), (3)

effectively minimising the energy of the non-solenoidal part of the measured
(u,w).

Two-dimensional linear internal wave theory relates the buoyancy b with the
vertical velocity. This is readily understood since, in the absence of diffusion,
the density surfaces move up and down with the vertical velocity. The relation,

b = −iN
2

ω
ψx, (4)

allows for another check on the integration: a check that ought to be included
whenever velocity and buoyancy fields are measured separately. In the numerical
simulation this relation is fully recovered, as expected from the two-dimensional
code. In the laboratory experiment it provides both a check whether our inte-
gration of the buoyancy field works, and a validation of our assumption that we
measure an essentially two-dimensional field. This assumption underlies most
of the previous work on attractors in narrow tanks [12, 7, 8, 6] and practically
all previous experimental studies to internal waves.

3. Results

For the parameters used in the laboratory, the density gradient fields reveal
a simple, essentially rectangular attractor with a shape very similar to that
presented by previous authors [7, 5]. From the PIV observations, we find the
accompanying velocity fields. The forcing is somewhat stronger than that used
by [7, 5], giving shear velocities in the attractor branches that are an order of
magnitude larger, i.e. 10 mms−1. The velocity fields in the laboratory are poorly
resolved in places, due to the combination of low seeding densities (particularly
under the sloping boundary), and the wave-driven net-drift of PIV-tracers [6]
(this net-drift eventually results in a weak three-dimensional flow).

We observe the growth of an attractor in about twenty periods, featuring the
generation of low-wavenumber internal wave beams from the sloping wall and
the subsequent focussing, linear wavenumber cascade, towards the attractor.
The wavenumber spectrum achieves a steady state once the high-wavenumber
side of the spectrum reaches the dissipation length-scale. From this steady
state we obtain the perturbation gradient density fields and velocity fields. The
experiments were forced during 50 periods.
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We calculate the density perturbation field by integrating the gradient fields
measured by synthetic schlieren and then perform harmonic analysis on the
integrated fields over the last twenty periods. The resulting perturbation density
field is compared with the harmonic analysis of the perturbation density from
the numerical simulation. From the harmonic analysis we obtain a real and
an imaginary part that are combined to one complex field, so that we can plot
both the amplitude and phase of this complex field. Amplitude and phase show
the imprint of the attractor, visible in figure 2. The amplitude field reveals
a decay in the clockwise direction of the branches (the internal wave beams)
from the sloping wall. Compared with the numerical simulation, the cross-
sections of the attractor branches are wider in the experiment but the values
are comparable. The same difference in confinement is observed in structure of
the phase. Although values are in agreement, the angle of propagation in the
laboratory experiment is different in the upper and lower part of the fluid. This
indicates a non-constant N and results in an attractor that looks a bit different.

Figure 2: The amplitude and phase of the perturbation buoyancy after harmonic
analysis. Laboratory on the left and numerical model on the right

Figure 3 uses relation 4 to compare the buoyancy field from the integrated
synthetic schlieren data and the vertical velocity component from the PIV. As
the synthetic schlieren and PIV measurements are performed separately, we
leave out the phase part (the -i in equation 4), instead we compare absolute
values. The structure of both fields is very similar, apart from the region under
the slope where we cannot measure the velocity. Where both measurements
exist, the values differ by less than 5%.
As for the density, from harmonic analysis we obtain real and imaginary com-
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(a) (b)

Figure 3: Comparison between observed a) buoyancy field amplitude and b) vertical
velocity field via left-hand side and right-hand side in equation 4.

ponents for vertical and horizontal velocity fields. These are integrated to pro-
vide the complex amplitude of the streamfunction (and can be combined to
the complex streamfunction field). We do this for both numerical simulation
and laboratory experiment and the show real part in figure 4. The actually
measured velocities and the derivative of ψ differ less than 1%. The observed
streamfunctions are similar but again show, as would be expected, the different
angle of propagation. They both reveal that a realistic streamfunction field is of
simple shape. The numerical simulation results in somewhat lower values due
to the more confined structure of the velocity field.

(a)
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Figure 4: Streamfunction for a) experiment and b) numerical simulation.

4. Discussion and summary

The qualitative agreement between gradient density fields in the laboratory and
from the numerical simulation was reported previously [5]. Here, we conclude
that the numerical simulation and the laboratory experiment also correspond
quantitatively notwithstanding some distinct differences between them. The
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observed density fields have similar amplitude values and phase structure. The
forcing in the numerical simulation is adjusted such that the peak velocities cor-
respond to the peak velocities observed in the laboratory experiment. This does
not mean the streamfunction values will match, only that the peak gradients
in the streamfunction will match. In particular, given the difference in spatial
structure, the range of streamfunction values will be greater for the experiments,
as is indeed the case. The difference in propagation angle of the wave beams
in numerical and laboratory experiment is related to our uncertainty about the
stratification in the laboratory experiment, that features a slightly non-constant
value of N .

The differences in spatial structure found between the two suggest that con-
sidering only internal dissipation of the waves is not realistic. As the dissipation
from the front and back wall in the laboratory is likely to affect only the low
wave numbers, it seems that the boundary layers where reflections occur are
important in the laboratory experiment. The top and bottom of the fluid in the
laboratory feature some mixed layers, as can be seen from the phase spreading
at those locations in figure 2.

The use of the streamfunction is only possible in a two-dimensional descrip-
tion of the flow. In our comparison, we recognise that the numerical simulation is
two-dimensional and that the laboratory is not. This may explain some further
differences in the spatial structure of the streamfunction. However, the accurate
recovery of the relation between observed buoyancy and vertical velocity reveals
that the laboratory experiments are well described by two-dimensional theory
(figure 3). This two-dimensionality is something that should be tested in labora-
tory observations whenever both synthetic schlieren and PIV data are available.
The streamfunction fields are the plateau type of solution, very comparable to
the solutions found for a sloshing forcing at the surface. It appears that viscos-
ity smoothes the solution. This is true at least in the smaller laboratory scale
where the linear energy cascade of the basin scale waves approaches the viscous
scales after a small number of loops [7]. The form of the streamfunction for
much larger scale flows (e.g. astrophysical flows) remains an open question [16].

In summary, we presented a new way of working with observations as typ-
ically found in laboratory experiments on stratified fluids. The least squares
integration of the observed/reconstructed perturbation density gradient fields
reveals a physically more readily understood scalarfield, namely the perturba-
tion density field. Comparison with a two-dimensional numerical simulation,
and with two-dimensional internal wave theory, reveals that the narrow three-
dimensional tank can be considered effectively to be two-dimensional. This ef-
fective two-dimensionality also suggests that the description in terms of stream-
function is useful, so the velocity fields are integrated using the same least
squares approach to the integration as for the perturbation gradient density
fields. Although the streamfunction might arguably be a less physical scalarfield
than the perturbation density field, it is the field considered by most theoretical
work. We conclude that the streamfunction for a real internal wave attractor in
a viscous fluid is of plateau/simple type.
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Appendix Inverting density gradients

Let ξ = (ξ, ζ), the (2D) scaled measurements of the apparent displacement of synthetic schlieren
patterns. Without loss of generality, we can write ξ in terms of a scalar potential ρ and vector
potential Φ as

ξ = ∇ρ + ∇ × Φ. (5)

Clearly, ∇ρ represents the irrotational part of ξ, while ∇ × Φ is the rotational part. Now since
the apparent displacements themselves are due solely to the gradient of a scalar quantity, any
rotational part of δ represents an error in the measurement. The segregation of ξ into rotational and
irrotational parts, however, is not unique. We might therefore choose to project ξ onto irrotational
space to minimise the energy contained in ∇×Φ. In particular, we might choose ρ so as to minimise

ε =

Z

D

(∇ × Φ)dx =

Z

D

(ξ − ∇ρ)dx, (6)

where ε is the energy in the rotational field and D is the fluid domain. The synthetic schlieren
measurements (ξi,j , ζi,j) are obtained on a regular grid (xi, yj) = (i△, j△), with i = [0, m] and
j = [0, n], so it is convenient to consider a discrete version of 6. For reasons which shall become
clear, we elect to form the discrete version using central differences on a staggered grid with spacing
△,

ε = Σm−1

i=0 Σn
j=0(ξ

i+ 1
2

,j
−

ρi+1,j − ρi,j

△
)2 + Σm

i=0Σ
n−1

j=0 (ζ
i,j+ 1

2

−
ρi,j+1 − ρi,j

△
)2, (7)

where we use linear interpolation to determine ξ
i+ 1

2
,j

= (ξi+1,j + ξi,j)/2 and ζ
i,j+ 1

2

= (ζi,j+1 +

ζi,j)/2. This summation is rewritten as

ε = (δ − Mρ)T (δ − Mρ) (8)

where δ is a vector containing P = m(n + 1) + n(m + 1) entries serialising the m(n + 1) values of
ξi+1/2,j and the n(m + 1) values of ζi,j+1/2, and ρ contains the Q = (m + 1)(n + 1) ( unknown)
serialised ρi,j values. The P × Q matrix M is block bi-diagonal, zero apart from entries of 1/△
along the diagonal and −a/△ somewhere else along the same row (with the position depending on
whether the row represents an x or z gradient).

Since P > Q then the system is over-determined and minimising ε is a least squares problem,
the solution of which requires ρ to be chosen such that

MT Mρ = MT
δ (9)

While this linear problem can be solved directly (e.g. using Singular Value Decomposition or the
Householder Transformation), this calculation is computationally expensive. However, the particu-

lar structure of MT Mρ and MT δ reveals an alternative approach. In particular, we note that for
internal points we have

ρi+1,j + ρi−1,j + ρi,j+1 + ρi,j−1 − 4ρi,j

△2
=

ξi+1,j − ξi−1,j + ζi,j+1 − ζi,j−1

2△
, (10)

the second order finite difference approximation to ∇
2ρ = ∇ · ξ. At boundary points the formula

is similar, omitting values that fall outside the domain. For example, at the i = 0 boundary (away
from the corner),

ρi+1,j + ρi,j+1 + ρi,j−1 − 3ρi,j

△2
=

(ξi+1,j + ξi,j) + ζi,j+1 − ζi,j−1

2△
, (11)
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while when we also have j = n (hence a corner point) this further reduces to

ρi+1,j + ρi,j+1 − 2ρi,j

△2
=

(ξi+1,j + ξi,j) − (ζi,j + ζi,j−1)

2△
, (12)

The brackets on the right-hand side in these last two expressions serve to highlight the role played
by the interpolated values ξi+1/2,j and ζi,j−1/2 . The simplicity of the above expressions, and
the similarity between these and the Poisson equation, has two important consequences. First, an
iterative solution using a multigrid formulation is both straight forward and efficient. Second, the
multigrid solution is readily adapted for more complex domains. The relaxation step of the multigrid
is essentially replacing ρi,j with the mean value obtained using the trapezium integration rule from
each of the surrounding points that fall within the domain. Indeed, although not formulated as a
least squares problem, this natural approach to direct iterative integration of the observed density
gradient is exactly what has been used previously by [2].
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